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INTRODUCTION

The so-called "heat diagram," or (p diagram, in which the

state of a mass of steam is represented by a point on a plane with

absolute temperature {&) and entropy (^) as rectangular coor-

dinates, has in recent years been much used by writers on tech-

nical thermodynamics, and for many purposes it is most instruc-

tive, though some caution is needed in interpreting it. But for the

quantitative solution of problems in steam-turbine design it is by
no means comparable in convenience with the ** Mollier diagram"

or total heat entropy diagram, in which the representation is on a
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plane with the total heat (H) and entropy (^) as rectangular

coordinates. The idea of using a surface with H, cp, and p (pres-

sure) as rectangular coordinates is due to Willard Gibbs, H being

the same as his "heat function" x- The H q) diagram may be

regarded as the projection of this surface on the H cp plane, and

it was introduced to the notice of engineers by Prof. Mollier, of

Dresden, by whose name it is commonly known.

The first six sections of the following paper serve as an intro-

duction, for those not familiar with the subject, to some of the

technically important properties of quantities H and cp and of the

Mollier diagram. The remainder of the paper contains a discus-

sion of the form, on this diagram, of the expansion line for wet

steam flowing through a multistage turbine of known stage effi-

ciency, and the development of a practical method for use by
designers for drawing the expansion line on the H cp diagram

without the use of the laborious step-by-step method.

1. THE TOTAL-ENERGY EQUATION FOR STEADY FLOW OF A FLUID

Let a fluid of any sort be flowing steadily along a channel

CoPC (Fig. i). Let Ao and A be two sections of the channel

which we shall call the entrance and exit sections.

A

Ao
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Fig. 1

Let poVoOoEo be the pressure, specific volume, absolute tem-

perature, and internal energy per unit mass of the fluid as it

crosses the entrance section, and let pv6E he the corresponding

quantities at the exit section. These are to be averages over the

section, and the variations from one point to another of the section

are to be small.
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Let To be the kinetic energy per unit mass at Ao, of the axial

component ^ of the velocity, and T the corresponding quantity at

A. The channel at ^o and A shall be varying in cross section so

slowly that the kinetic energy of the radial velocity is negligible.

If I per cent of the total kinetic energy is a negligible quantity, a

total taper of one in four, for a cone, is permissible, so that no

severe demands are made on the constancy of cross section at

Ao and A.

Subject to the foregoing restriction in the immediate vicinity of

Ao and A, the shape of the channel between Ao and A is a matter

of complete indifference. There may, if we please, be included,

as forming a part of the channel or completely inclosed within it,

a motor actuated by the flow of the fluid and delivering work

outside the channel, or a pump actuated by the appHcation of

power from without and doing work on the fluid. The walls of

the channel must be tight so as to prevent leakage of fluid, but

they need not be thermally insulating. The fluid may be any

liquid, vapor, or gas, but for concreteness we shall usually refer to

it as steam.

The first law of thermodynamics, if applied to the passage of one

poiuid of steam from Ao to A, gives us the following statement;

the total energy per poimd—internal plus kinetic—is increased by
the amount of the work done on the steam in crossing the entrance

section by the steam behind it, and is decreased by the amount of

the work it does against the steam ahead of it in crossing the exit

section, by the work given out by the motor, and by any heat

which may have been lost by conduction or radiation through the

walls of the channel, which may in places coincide with the walls

of the motor. We thus have the equation

{E + T) - (Eo + To) =- poVo- pv-W -Q (i)

in Which W is the work done outside the channel by the motor,

and Q is the heat loss, both measured per pound of steam. The
work W includes work done against friction at any bearings which

are outside the channel. All the terms in the equation are to be

understood as expressed in the same units, e. g., British thermal

units (B. t. u.).

^ See note at the end of this paper.
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Rearranging equation (i), we have

T -To +W = (E + pv)o- (E + pv) -Q (2)

which is the first fundamental equation of the theory of fluid

motors. It is appHcable to regularly acting periodic motors as

well as to continuous-flow motors such as turbines, if the quantities

in the equation are averaged over an integral number of periods or

over any very long time. Since no restriction has been imposed

upon the sign of either W or Q, the case of continuously or period-

ically acting pumps is also included, and the equation is, in fact,

valid for all cases of steady or—under the above condition as to

averaging—periodically varying flow of any sort of fluid.

2. THE TOTAL HEAT OF STEAM

The quantity (E+pv) has a definite value for every state of

the fluid in question and has been designated as ''heat of forma-

tion at constant pressure," "heat contents," and "total heat."

We shall adopt the name total heat and write

E+pv =H (3)

The quantity to which Regnault gave the name "total heat,"

and which he measured for dry saturated steam is, for all engineer-

ing purposes, sensibly identical with H as just defined. The small

outstanding difference is due, first to the fact that the internal

energy of water at the ice point is not absolutely though nearly

the same at all pressures ; and second to the fact that the volume

of water at the ice point under any given pressure is not zero

though usually quite negligible in comparison with the volume,

at the same pressure, of an equal mass of steam dry enough to be

suitable for use in a steam motor.

Values of H for water and for dry-saturated steam are given in

the steam tables. Their difference is evidently the heat of evapo-

ration, and the value of H for any degree of dryness, x, may be

found by linear interpolation between the values for water and

for dry steam at the given pressure or temperature. For super-

heated steam, the value of H is greater than for dry-saturated

steam at the same pressure, by the amount of heat needed for the

superheating at constant pressure, which depends on the specific

heat of superheated steam and is not so well known as might be
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desired. Convenient tables for saturated and superheated steam

are given in the "Steam Tables and Diagrams" of Marks and

Davis 2 from which all the steam data used in this paper have

been taken.

We may now write equation (2) in the form

{T-To)+W +Q =Ho-H (4)

The quantity (Hq — H) will, for short, be called the "heat-drop"

of the pound of steam during its passage from ^o to A.

The first two terms of equation (4) represent a quantity of

mechanical energy, hence the equation may be read as follows:

The mechanical energy produced plus the heat lost to the sur-

roundings, is equal to the heat-drop of the steam. It should be

noted that it has not been stipulated that the fluid shall flow with-

out encoimtering passive resistances such as viscosity. There

may be as much internal dissipation of mechanical energy into

heat as we please, provided that W represents work actually

delivered outside the channel, including work against friction at

any outside bearings, and that (T — To) represents the actual

excess of kinetic energy of the axial component of velocity in the

exhaust at A over that in the feed at Ao.

3. ADIABATIC FLOW

An adiabatic change of state is defined as one during which the

substance in question neither takes in nor gives out heat through

its bounding surface. If, therefore, there is no heat leakage

through the walls of the channel, the change of state of the steam

between Ao and A is adiabatic. We may then set Q = o and

equation (4) reduces to

iT-To)+W =Ho-H (s)

an equation which has several immediate applications to familiar

facts. For example, in the case of steady flow, without heat loss,

through a simple tube not containing a motor, the work W is

zero and equation (5) says that the increase of kinetic energy is

equal to the heat-drop. This is the case of flow through a turbine

nozzle or through fixed guide blades, if the flow is so rapid or the

2 Longmans Green and Co. 1909.



584 Bulletin of the Bureau of Standards [Voi. 7, No. 4

channel so well protected that the heat leakage is negligible. In

the case of a properly designed, velocity-compounded, impulse

turbine, working with a constant pressure within each stage, the

velocity and kinetic energy decrease during flow through the

intermediate reversing guide blades. Hence T, at exit from these

blades, is less than To, at entrance to them, and H>Ho. The
kinetic energy dissipated in the guide-blade channels thus appears

in the steam as "reheat" making H larger than Ho.

The simplest possible case is that of adiabatic throttling or wire-

drawing in which there is neither outside work W nor any sensible

increase of kinetic energy. The whole first member of equation

(5) now vanishes, so that the total heat of the steam remains

unchanged during its fall of presstue. Since for steam which

remains dry-saturated the value of H decreases with falling pres-

sure, wire-drawing thus tends to superheat dry steam or to dry

wet steam, a familiar fact upon which the action of the "throt-

tling calorimeter" is based.

4. DISSIPATIVE FLOW

The passage of heat by conduction or radiation from one point

in a body to another involves a waste of availability of the heat

thus uselessly let down from a higher to a lower temperature.

The internal heating of a body by friction or viscosity involves a

waste of the mechanical energy dissipated as work done against

the passive resistances of friction or viscosity. In either case, the

original state of the body, existing before the waste took place,

can not be reestablished except by interference from without;

and if we take into account all the bodies involved, the outside

bodies used as well as the one concerned in the original process,

the initial state of all of them can never be reestablished at all by
any means whatever.

Such processes are known, in thermodynamics, as " irreversible
"

processes. No physical process is entirely free from such elements,

and all real changes are therefore irreversible. But if these waste-

ful elements of the change are relatively so insignificant as to be
of negligible importance, the change is sensibly though never

exactly "reversible." Evidently any process from which we
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desire to get as much work as possible should be freed as far as

may be from all causes of waste, i. e., of irreversibility.

The wire-drawing of steam through the ports during admission

to the cylinder of a reciprocating engine, especially at the cut-off

point and at the beginning of admission with incomplete cushion-

ing, is an irreversible and wasteful action to be avoided as far as

may be. The expansion between complete cut-oft' and the opening

of the exhaust valve is, so far as the steam itself is concerned, sensibly

free from internal irreversible actions and therefore internally

reversible, in the thermodynamic sense, though on account of the

effect of the cylinder walls it is usually far from adiabatic.

The expansion of steam through a turbine nozzle or through

blade channels of decreasing section would, in the ideal case, be

free from dissipation, i. e., not retarded by frictional or viscous

resistances, and would be in the thermodynamic sense reversible

if so rapid that no sensible interchange of heat took place between

different parts of the steam. In practice, there are always resist-

ances due to skin friction and eddy currents; some mechanical

energy that might otherwise be produced is thus dissipated into

heat and the process is irreversible. Since these resistances are

wasteful, it is evident that the smaller they are and the more
nearly reversible the expansion is, the more closely the gain of

kinetic energy (T — To) approaches the theoretically possible niaxi-

mtmi which is determined, if there is no leakage of heat, solely by
the initial state of the steam and the final pressure to which

expansion takes place in the space into which the steam jet issues.

During the expansion of steam between any two points in its

path through a turbine, the whole mechanical energy produced,

or {T — To + W), also approaches its ideal maximum value as all

the internal losses due to skin friction and eddy currents in nozzles

or blades, windage, and wire-drawing of steam which leaks past

blade tips or through bushings, approach zero. The only difference

between this case and that of flow through a nozzle is that in the

nozzle or in fixed blades the work is necessarily exactly zero, while

in the more general case W may have a finite value and (T — To)

is often negligibly small in comparison with W.
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5. ISENTROPIC CHANGES OF STATE

If, during a reversible isothermal expansion at the absolute

temperature 0, a body—e. g. a poimd of steam—takes in from

without a quantity of heat Q, the quantity H is known as the

" increase of entropy " of the body. Thus, during the evaporation

of one pound of water at constant pressure and temperature,

ending in its conversion into a poimd of dry-saturated steam, the

increase of entropy is equal to the latent heat divided by the abso-

lute temperature. This quantity is given in the steam tables as

"entropy of evaporation."

If a reversible change of state occurs during which the tempera-

ture of the body is not constant, we may cut the process up into

a mmiber of small steps; for each of these divide the heat taken

in by the average temperature of the body during that step;

and finally add all these small quotients. If we then reduce the

length and increase the number of the steps indefinitely, the sum
B

approaches a definite limit expressible in the form I -^ where A

A
and B are the initial and final states. The value of tliis expres-

sion is the same for all reversible changes which lead from the

state A to the state B, and it is known as the increase of entropy

of the body during the change A B. The elementary case of an

isothermal change, considered above, is evidently included in

this more general definition of change of entropy.

If, as is usual, we take the temperature of the ice point and

the pressure of one atmosphere as our standard conditions, the

entropy of a mass of fluid at any other temperature and pressure,

referred to this standard state, is the value of I -¥ from the

standard to the actual state along a reversible path ; and this

value depends only on the end state reached and not on how the

body actually reached it, if we assume, as is permissible, that

the end state could have been reached by a reversible process.

In an adiabatic change of state, dQ is everywhere zero. Hence
if an adiabatic process is also reversible, the entropy of the body
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in question does not change. Any change of state in which the

entropy of the body remains constant is known as an isentropic

change.

The ideal adopted for the expansion of steam in the cylinder of

a reciprocating engine is that of expansion without wire-drawing

or other irreversible internal losses, in a perfectly nonconducting

cylinder. Such an expansion would be a reversible and adiabatic,

and therefore an isentropic change of state. From this it has come
about that the term ''adiabatic" is very often loosely used in

engineering works with the meaning "isentropic." In reality,

however, an adiabatic process need not be isentropic and an

isentropic process need not be adiabatic. This becomes so

evident in studying steam-turbine theory that there is ground for

hope that this confusion of terms may eventually be eliminated

from our thermodynamic literature.

If, for example, a pound of steam passes from a state A to a

state B, the change of its entropy is definite and depends only

on A and B. If the actual process is irreversible because of

internal dissipation by which heat is produced within the steam,

the increase of entropy is not to be found by taking the value of

B

-^ along the actual irreversible path, but is greater than this.

A
For heat generated internally has the same effect in changing the

temperature or otherwise influencing the state of the steam as an

equal amount of heat added from without, so that the final state

reached is not the same as if there had been the actual addition

of heat from without but no internal generation of heat.

In any actual expansion between two given completely defined

states, the final entropy of the expanding substance is always

B

A
with Q representing only heat added from without, for even in

the best case there is always some internal dissipation. This

excess represents heat produced by dissipation of mechanical

energy which might, with ideally perfect arrangements, have

74356°— 12
7
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been saved and used. It is therefore a measure of the wastefulness

of the process of expansion. IrreversibiHty, wasted availability

of energy, dissipation, and needless increase of entropy, are merely

different aspects of the same thing. One main reason why
entropy, which has been somewhat of a stumbling block in tech-

nical thermodynamics, is retained, is that its changes give us the

most convenient quantitative expression of the wastefulness or

the efficiency of thermodynamic processes from which mechanical

work is to be obtained.

The expansion of steam in the cylinder of the reciprocating

engine is approximately reversible, so far as the steam itself is

concerned; the internal losses due to dissipation inside the steam

are small, and poor indicated efficiency is due largely to the fact

that the expansion is not adiabatic, the influence of the cylinder

walls causing the course of the expansion to be different from that

desired. The expansion though nearly reversible is not adiabatic

and not isentropic.

The expansion of steam in a turbine may be regarded for most

purposes as adiabatic, the external losses of heat from the steam

to the casing being small. But the process is subject to a great

deal of dissipation by eddy currents, etc., so that though nearly

adiabatic it is far from being either reversible or isentropic.

The ideal of the steam turbine is thus the same as that of the

reciprocating engine, namely, isentropic expansion. In the one

case the ideal is not attained because the changes of state of the

steam, though nearly reversible, are far from adiabatic; in the

other, because though nearly adiabatic, they are far from reversible.

The assumption that expansion through a steam turbine is

adiabatic and fails of being isentropic and ideally efficient only

because of internal dissipation losses of various kinds is, of course,

only an approximation. For, except possibly in some very unusual

cases, there is always some heat lost by conduction and radiation

from the turbine, and there is always some longitudinal conduc-

tion between the different stages, tending to make separate parts

of the expansion not quite adiabatic even though it might be so

as a whole. External losses might be reduced or even made
negative by jacketing; but while this would improve the efficiency

of the turbine, considered by itself, the jacket steam used would
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probably much more than offset the gain and cause a considerable

increase in the total water rate. It is possible that with small

turbines not well protected the external heat losses might be as

great as the internal dissipation and so just balance the reheat.

In such a case the total result would be the same as if the mechan-

ical energy actually wasted inside the turbine had been used up

on bearing friction outside, with no internal heating and no con-

duction and radiation loss. The expansion might thus be isen-

tropic without being, even approximately, either adiabatic or

reversible.

We shall, however, treat the turbine problem as one of adia-

batic expansion, having therefore an isentropic expansion as its

ideal, and shall treat the external heat losses as negligible and

consider the flow as subject to equation (5). Such a simplifica-

tion would not be permissible in precise physical work, but for

•the pmposes of steam-turbine design, the errors thus introduced

are probably always less than those due to the uncertainties in

the values of some of the quantities that have to be assumed in

the computations—notably, velocity losses in nozzles and blade

channels and windage resistance, both of which influence the effi-

ciency, of which an estimate must be made in order to design

at all.

6. THE H ^ OR MOLLIER DIAGRAM

The total energy equation for adiabatic flow

{T-To)-^W =Ho-H (5)

gives us information in terms of the total heat H. We have also

seen that the ideal expansion is isentropic, since that corresponds

to absence of dissipation and therefore to 100 per cent efficiency

in the production of mechanical energy. It is. therefore evident

that for the graphical solution of problems in steam flow—turbine

design in particular—a chart showing jthe properties of steam on

a plane with the total heat H and entropy cp as rectangular coor-

dinates will be very convenient. On this plane, if H is made ordi-

nate and g) abscissa, an isentropic expansion is represented by a

straight line drawn vertically downward from the point repre-

senting the initial state; and the heat-drop during the expansion

is represented by the length of this line from the initial to the final
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position of the state point. In any adiabatic expansion whatever,

the difference of ordinate of the initial and final points gives us, at

once, the heat drop and therefore, by equation (5), the mechanical

energy developed.

We have now to mention some of the geometrical properties of

the H cp diagram for steam and may refer to Fig. 2, which gives a

qualitative idea of the diagram with the isopiestics, or lines of

constant pressure, as well as lines of constant dryness and super-

heat. An exact plot will not be attempted because it is easily

available in the above-mentioned tables of Marks and Davis as

well as in other books to which it may be presumed that the

reader has access.

Vertical lines are isentropics, and horizontal lines are lines of

constant total heat or "throttling lines." A vertical distance

read off on the scale of ordinates is a difference of total heat or a

heat-drop. A horizontal distance reprCvSents a difference of

entropy.
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The steam saturation line SS" is nearly straight within the range

of pressures used in practice. It may easily be plotted by taking

simultaneous values of H and ^ for dry saturated steam from the

steam table. The lines xx etc. are lines of constant dryness;

points on one of these lines represent the possible simultaneous

values of H and cp for wet steam of the given dryness factor x.

They run in the same general direction as the saturation line.

The lines tt etc. rimning also in this same general direction but

above instead of below the saturation line 55, are lines of con-

stant superheat t.

The lines we are most interested in are those shown sloping

upward toward the right, straight for wet steam, i. e., within the

saturation field below 5S, but curving upward with rising super-

heat after crossing 55 and entering the superheat field. These

are the constant-pressure lines or isopiestics. Within the satura-

tion field they are also isothermals, since the temperature of wet

steam is fixed by its pressure; but above the saturation line they

cease to be isothermals, because superheated steam at a given

pressure may have any temperattue higher than its saturation

temperature.

Starting with one pound of wet steam in the condition of pressure

and dryness represented by the point a, let us add to it at constant

pressiure and temperatm-e a quantity of heat represented by the

length ac. The state point moves to b, the entropy increasing by
an amount represented on the entropy scale by cb. But since the

temperature 6 is constant we have, by the definition of change of

entropy,

length of cb = length oi ac-^6

these lengths being measured on the scales of H and cp used in

drawing the chart. If these scales are the same, = ac-v-cb = tan a.

If as is usual the scales are different, we have

6 = k tan a (6)

where ^ is a constant depending on the scales and equal to unity

when they are the same.

The slope of the isopiestics for wet steam is therefore propor-

tional to the absolute temperature : the lines have greater slope as

the pressure rises and have the familiar fan-shaped arrangement

shown in Fig. 2. The reasoning just used is applicable even when
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the isopiestics are curved, i. e., for superheated steam, if ac and be

are infinitesimal ; so that equation (6) is general if a is understood

to be the angle between the cp axis and the tangent to the iso-

piestic at the given point. There is no sudden change of direction

at the saturation line, because there is no discontinuity in the tem-

perature ; but with increasing superheat the temperature and there-

fore, by (6) , the slope of the isopiestics increases and they are con-

cave upward, as shown.

Lines of constant dryness drawn for regularly changing values

of X, e. g., :Jf = o.9, :x: = o.8, x^o.j, etc., cut off equal segments on

any given isopiestic, and the lengths of the segments on two differ-

/ ,

ent isopiestics are proportional to the values of ^yi +^ where / is

/

the latent heat, and ^ is the quantity tabulated as "entropy of

evaporation.

"

To prove this we consider Fig. 3, in which 5*5 represents

the steam saturation line and S'S^ the water line, i. e., the

constant dryness line for x = o. The whole length of any iso-

piestic AB between the two saturation lines is given by

AB = -ylAO + cW. But CB = / = the heat of evaporation at the

given pressure and temperature p 0; while if the scale of (p is the

same as that of H, AC=n=the entropy of evaporation. We
e

therefore have

AB = yJ+^^=iVi+^^

If the scales are not the same there will be a proportionality factor

different from unity.
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Any line of constant superheat crosses all the isopiestics at

points where their slopes are greater by a constant amount than

their slopes at and below the saturation line.

7. REPRESENTATION OF EXPANSION ON THE H ^ PLANE—EFFICIENCY

Let us start with one pound of steam at the pressure p^. If the

steam is dry-saturated, its initial state is represented by the

point A (Fig. 2), otherwise by the intersection of the same iso-

piestic with the appropriate dryness or superheat line. Let

p2 be the final pressure to which expansion takes place. Then
C represents the final state reached in isentropic expansion,

and AC=H^—H^ is the ideal maximum heat-drop available

for conversion into mechanical energy during adiabatic expansion.

The ideal yield may thus be read off at once from the scale at the

side of the chart,and the ideal water rate computed for a steam

motor in which steam expands adiabatically from the initial

state A to the final pressure p^. It is necessary to say *'the

state A'' and -not simply "the pressure />i"; for it is evident

that on accoimt of the non-parallelism of the isopiestics, this

isentropic heat-drop is greater for dry or superheated than for wet

steam. This is qualitatively in accordance with the observed

fact that, with given Hmiting pressures, a steam engine or a tur-

bine has a lower water rate when the initial superheat is raised.

In the actual expansion of steam through a turbine to the final

pressiu'e p2, there is internal dissipation and the working of the

machine is not ideally efficient. By reason of this dissipation,

part of the mechanical energy which might have been obtained

with a perfect machine is either not produced at all or if produced

is again immediately dissipated. The whole of this lost mechan-

ical energy appears as "reheat" in the steam, diminishes the

actual heat-drop, and increases the entropy just as much as if it

had been heat added to the steam from without. The final

state of the steam at p2 will therefore be represented by some

point B, to the right of and higher than C. The greater the

dissipation the farther B will be from the ideal final state C.

The ideal heat-drop being H^—H^ = AC, the actual heat-drop

is H^—H^^AD, and the reheat is H^ —H^^CD. The efficiency

of the process in converting available heat into mechanical energy
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is evidently equal to AD/AC. This is not necessarily the same as

what would ordinarily be called the efficiency; for, by equation

(5) , (Hi —H2) goes to the production of the kinetic energy (T — Tq)

as well as to the production of the outside work W, which is the

important result of the process and commonly the only result

considered in computing efficiency. But in general the quantity

(T — To) is negligible in comparison with the useful work W
delivered by the steam to the rotor inside the glands. If this is

true and if A and B (Fig. 2) represent the state of the steam in

the steam chest and in the exhaust chamber, the efficiency of

the machine in the usual sense is given by e = AD/AC. If € were

given a priori, D and therefore the final steam condition repre-

sented by B would thereby be fixed.

In order to discuss the efficiency of the separate parts of a multi-

stage turbine we have first to define the term stage. In a multi-

stage impulse turbine, of the Rateau type for instance, points at

the entrances to the various nozzles and at exit from the last com-

partment to the exhaust are "similarly situated. " In a turbine

of the Parsons type, points in the clearance spaces at entrance to

the fixed blades, together with a point at exit from the last mov-
ing row to the exhaust space, are "similarly situated. " We shall

define a stage as the part of the turbine between any two such

adjacent similarly situated points. This agrees with the usual

definition of a stage for the impulse turbine, but not with that

sometimes adopted for turbines of the Parsons type in which each

row of blades whether fixed or moving is regarded as a separate

stage. Our definition makes a " stage" consist of a fixed row and
the next following moving row. This use of the term seems more
rational than that which divides the turbine into two kinds of

stages—the moving rows and the fixed rows—in one of which no
work at all is done by the steam on the rotor. At all events, it is

convenient for the purposes of this paper and will be adopted.

If, then, we consider not a whole turbine but a single stage, we
may say that the change of kinetic energy (T — To) through any
stage is negligible. In an impulse stage T and Tq are usually sepa-

rately negligible ; in a Parsons stage the change of steam speed is so

small as to make {T — T^ negligible except in the first stage, and
since turbines of this type always have a great many stages, an error
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of this sort regarding a single one is of no importance in regard

to the turbine as a whole. If the kinetic energy term is negligible

in comparison with W for each separate stage, it is so for the whole

turbine, and if e is the efficiency in the usual sense we have (Fig. 2)

AD
'=AC

When 6 refers to a single stage it is called the *' stage efficiency,
'*

for, as we shall see in section 9, a distinctive term is needed.

8. FORM OF THE EXPANSION LINE—GRAPHICAL CONSTRUCTION

It is evident that the expansion of steam in passing through a

multistage turbine is not a perfectly regular and continuous process

H

*R>
Fig. 4

and that the expansion line can therefore not in reality be a

smooth curve like AB in Fig. 2. Let us consider the simple case

of a three-stage impulse turbine working with wet steam between

the pressures p^ and p^, the intermediate pressures at entrance to

the second and third stage nozzles being p^ and p^.

In the first-stage nozzles the pressure drops from p^ to p2 if the

machine is properly designed. There is some reheat due to dissi-

pation in the nozzles before the pressure has fallen to p2, but by far
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the greater part of the reheat is due to blade losses, windage, leak-

age, and " carry-over "
i. e., the kinetic energy of the steam leaving

the last set of moving blades which is in general wasted and not

available for driving the issuing steam directly into the next set

of ncfzzles. All these except the nozzle loss occur at the constant

pressure p2. The true expansion through this stage will therefore

be represented ,by a line something like ABC (Fig. 4) and for the

second and third stages, if of approximately the same design as the

first, the true expansion lines will be of somewhat similar shape, as

shown at CDE and EFG. It would evidently be difficult to pre-

dict the precise form of the expansion line ABCDEFG in all its

small details, but fortunately this is not necessary; for in practice

we do not need to know the steam condition exactly for every point

but only for a few sets of similarly situated points.

Let us suppose, for example, that we want to know the steam

condition at entrance to the three sets of nozzles and in the ex-

haust; this information is given by the positions of the points

A, C, E, G. Now the position of C is fixed if we know the effi-

ciency of the first stage: For if e is this efficiency, we have

in which Ha is the value of H that would be reached if the expan-

sion were isentropic and the final state represented by the point a.

Another similar step from C to the next pressure p^ fixes the

point E, and a third the point G.

The points C, E, G can thus be found if the stage efficiencies

€1, €2, and €3 are known. Before designing can begin, they

must be known, either by experiment on single stages similar to

the ones in question, or by computation from a speed diagram;

for the stage efficiency is a datum which is fundamental to the

design and can not be dispensed with.

If there were more than three stages the same method might

be continued, and for any moderate number of stages this would
not be a laborious operation; but the practical problem is not

so simple, for in general only the terminal pressures are given

while the intermediate pressures are not given but are to be de-

termined in accordance with some further condition. It may,
foi instance, be desired that the work done on the rotor shall be
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the same in all the stages. No general solution of the problem

can be given in such a case, and a graphical solution by trial and
error might with a large number of stages involve a great waste

of time which must be avoided if possible.

At this point the problem simplifies itself. Usually we are

required to distribute between two limiting pressures a given

number of similar stages which may be assumed to have the

same stage efficiency if so designed that there shall be the same

heat drop in each. The points A, C, E, G, etc., will then lie on

a certain smooth curve of which the form is determined by the

constant stage efficiency and the initial state. If this curve can

be constructed, we may satisfy the requirement of equal heat

drop by distributing the points A, C, E, etc., on this line so as

to be at equal vertical distances apart. The points having been

thus determined, pressure and quality may be read off from the

chart. It will be shown how such a curve may be constructed

more easily then by the step-by-step method, if the number of

stages is large.

Up to this point we have considered only the similarly situated

points A, C, E, G. But let us suppose that what is wanted is

not the steam state at entrance to the nozzles but that at exit

from them, after the reheat in the nozzles but before the further

reheat at the constant lower pressure has occurred. This will

evidently be given by the points B, D, F (Fig. 4). If the stages

are all alike and the intermediate pressures have been so de-

termined, by distributing A, C, E, G, etc., at equal vertical inter-

vals, that the heat drop is the same in each stage, the steam

speed and the reheat will be very nearly the same in each set of

nozzles. The reheat after passing the nozzles will then be the

same in all the stages and B will be as far below C, measured

vertically, as D is below E, F below G, and so on. It is true,

this amount can not be determined exactly, but it can be esti-

mated with sufficient accuracy, and furthermore if there are

many stages so that the total heat drop in each is itself small, the

vertical distance between C and B will be still smaller and no

very great error can be made in the position oi B. If, therefore,

the cur\^e ACEG has been drawn the points BDF, etc., may all be
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found very easily if any one can be found. The same is true of

any other set of similarly situated points.

We have referred particularly to the impulse turbine, but in

designing a turbine of the Parsons type a knowledge of the form

of the curv^e through any set of similarly situated points is equally

useful. In either case it is essential that we should estimate the

steam quality at various points in the turbine, for otherwise the

cross-sectional areas can not be properly proportioned to pass the

required amoimt of steam at the velocities for which the blading

and nozzles have been designed, the desired pressure distribution

will not exist, and the whole working of the machine will depart

from the intentions of the designer, presumably to its disadvantage.

Whatever the set of similar points chosen, it is evident that the

true expansion line will approach a smooth curve drawn through

these points more and more closely as the number of stages between

the two limiting pressures increases and the heat-drop through

each stage diminishes. We shall speak of this limiting curve, for

an infinite number of stages of equal stage efficiencies, as "the

expansion line."

9. COMBINED EFFICIENCY OF SIMILAR STAGES IN SERIES—THE
REHEAT FACTOR

Let us consider a single stage, of efficiency e, working with either

wet or superheated steam between two pressures which differ very

little.

H

^<p

Fig. 5

Let A (Fig. 5) be the initial and B the final state of the

steam. To construct the expansion line we may proceed as

follows: Measure a short distance AC downward from the initial
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point. Divide this at D so that ADJAC = €, the given stage

efficiency; then AB will be an element of the expansion line.

Go on in the same manner from B, and continue till the lower

pressure limit has been reached. The smaller the steps the more
approximate the result if the graphical work is exact.

From the geometry of the figure we have

or by equation (6)

tan /8 =—tan a
i-e

k tan yS =— 6
i-e

(7)

(8)

As the pressure falls, the temperature 6 also falls; hence ^ decreases

and the expansion line is concave upward.

Let us next consider expansion of wet steam through a number
of successive stages, of equal stage efficiency e, between the

H

9>

Fig. 6

pressures pi and p2 which differ so that the pressure-ratio pjpo is

a rather large number, 30 for example.

Let A (Fig. 6) be the initial state of the steam and C the state

after isentropic expansion to p2. Let ^C be divided at D' so that

AD'IAC = €. Then if the combined efficiency of the whole set of

stages were the same as the stage efficiency, the point J5' would

represent the final state of the steam.

In reality, however, the expansion line starts from A with a

sharper slope than the line AB^ because the isopiestic p^ has a
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sharper slope than the isopiestic p.^. The expansion line then

cun^es gradually, crossing the intermediate isopiestics at such

angles that equation (8) shall be satisfied, and meets the final

isopiestic p2 at such an angle that its tangent is parallel to AB'
and at a point B which is evidently somewhat below B' . The
actual heat-drop AD is therefore greater than AD' and the com-

bined efficiency, €c = ADIaC, is greater than the stage efficiency

€ in the ratio ADJAD'. This ratio is known as the ''reheat-

factor" and will be denoted by R. Its value, which in practice

is seldom greater than i . i , depends on the ratio of the initial and

final temperatures and on the stage efficiency. It could be found

in any particular case by step-by-step construction of the expan-

sion line which would give us the position of B, while that of B'

is given by AD'lAC = e. If, on the contrary, the value of R is

known, the point B may be foimd without this graphical work.

We have now to show by a consideration of the form of the

expansion line how the value of R may be determined a priori,

for wet steam, i. e., for any part of the expansion line which

lies within the saturation field.

10. FIRST APPROXIMATION FOR THE REHEAT FACTOR R

The total curvature of the expansion line AB (Fig. 6) is fixed

by the stage efficiency and the difference in slope of the limiting

isopiestics; but the distance BB' and the value of {R-i) depend

on how this curvature is distributed, hence on how the isopiestics

are distributed between p^ and p^. If they change rapidly in

direction in the vicinity of p^, the expansion line AB will curv^e

rapidly at first, B will be close to B' and {R-i) will be small. In

the opposite case {R-i) will be large. We have therefore to

consider the distribution of the isopiestics.

It will be found, upon examination of an accurate chart, that

the isopiestics if produced do not meet in a point; but that their

intersections are so far to the left and their whole divergence

within the range of pressures used in practice is so small that

only a very slight change would be needed to make them all

meet in a single point. We shall first proceed upon the assumption
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1

that they do thus meet in a single point, comparing the results

later with those obtained from a more exact assumption.

Let (Fig. 7) be the point of intersection of the isopiestics;

let H and cp be measured from this point, and let them be plotted

Fig. 7

on equal scales so that ^ = 1 in equation (8). We then have to

substitute in equation (7)

, r. dH ^ H
tan p= — -1—

; tan a =~
acp cp

which gives us

dH H =
dcp 1 —e cp

or, after integrating between any two points on the expansion

line,

e 6

^2^2^^' =H^Cp^~- (9)

Noting that by the geometry of the figure

(Pi^Hs ^^^ //a _ tan A-2 ^ 62

(p2 H2
"

H^ Ian a^ 6^

equation (9) may be reduced to the form

H, \e,)

and the heat-drop from ^ to 5 is therefore given by the equation

//.-//.^hIi-^uj (.0)
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If the combined efficiency of the stages were the same as the

stage efficiency, the heat-drop would be e{H^—H^=eHii—^\

Hence the value of the reheat factor is

(A)

From this equation we obtain, for example, the following values

of {R — i), which give an idea of the order of magnitude:

TABLE I

p\ Pi e=0,2 €=0.6.

300 50 0.072 0.034

50 2 .096 .047

300 2 .168 .080

300 20 .100 .048

20 1 .083 .040

300 1 .186 .088

11. PRACTICAL WORKING METHOD FOR FINDING THE VALUE OF R

While equation (A) is not very complicated, it is inconvenient

because it requires our working with absolute saturation tem-

peratures instead of with pressures, and it would not in this form

be of any practical value. We therefore proceed to develop a

simpler method for obtaining values of R, which shall be sensibly

the same as those given by equation (A).

Values of (i^ — i) were computed by equation (A) for expansion

from 277.4 pounds to eleven lower pressures, the lowest being 0.31

pound, with stage efficiencies 6 = 0.2, 0.3.... 0.7. When these

values of (i^ — i) were plotted against log d^, they gave sensibly a

straight line for each value of e. It was found that all the values

could be represented very well by the equation

i? - I = 1 .207 (0.975 - e) {log,, 0, - log,, 6^) (B)

If this equation represented equation (A) exactly, we should

evidently have the relation

(i?,,-l)+(i?,3-l) = (-??n-l) (C)
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where Ri2, R23, and Ri^ are the values of the reheat factor for

expansion between d^ and 62, 62 and ^3, and 0^ and 6^, respectively.

It will be seen by reference to Table I that this relation is in fact

nearly satisfied in the four cases there given.

Taking equation (C) as sufficiently exact, we could then repre-

sent equation (B) by a straight line for any given value of e and
find the value of (R — i) for expansion with this stage efficiency

between any two absolute saturation temperatures, by taking the

difference of the ordinates at these two temperatures. If, finally,

we plot (R — i) against p as abscissa instead of against the incon-

venient log d, we shall have reduced our method for finding R to

practical shape. A single curve is appHcable only to a single value

of e, but we may either work to other values of e by means of

equation (B), or plot a number of curves for different values of e

and interpolate when making the readings of (R — i).

In Table II are values of R computed by equation (B) for expan-

sion from 350 pounds to 18 lower pressures, with the stage efficien-

cies € = o.i, 0.2, . . etc. . . 0.8

TABLE II

^2 €=0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

300 1.0075 1.0066 1.0058 1.0049 1.0041 1.0032 1.0023 1.0015

250 1.0161 1.0143 1.0124 1.0106 1.0088 1.0069 1.0051 1.0032

200 1.0265 1.0235 1.0205 1.0174 1.0144 1.0114 1.0083 1.0053

150 1.0394 1.0349 1.0304 1.0259 1.0214 1.0169 1.0124 1.0079

100 1.0569 1.0504 1.0439 1.0374 1.0309 1.0244 1.0179 1.0114

70 1.0717 1.0635 1.0553 1.0471 1.0389 1.0307 1.0225 1.0143

40 1.0936 1.0829 1.0722 1.0615 1.0508 1.0401 1.0294 1.0187

30 1.1047 1.0927 1.0808 1.0688 1.0568 1.0449 1.0329 1.0209

20 1.1191 1.1055 1.0919 1.0783 1.0646 1.0510 1.0374 1.0238

15 1.1292 1.1144 1.0997 1.0849 1.0702 1.0554 1.0406 1.0258

10 1.1429 1.1265 1.1102 1.0939 1.0775 1.0612 1.0449 1.0285

7 1.1545 1.1369 1.1192 1.1016 1.0839 1.0663 1.0486 1.0309

5 1.1651 1.1462 1.1274 1.1085 1.0896 1.0708 1.0519 1.0330

3 1.1808 1.1601 1.1395 1.1188 1.0981 1.0775 1.0568 1.0361

2 1.1926 1.1706 1.1486 1.1266 1.1045 1.0825 1.0605 1.0385

1.5 1.2102 1.1782 1.1552 1.1322 1.1092 1.0862 1.0632 1.0402

1.0 1.2120 1.1878 1.1636 1.1394 1.1151 1.0909 1.0667 1.0424

0.5 1.2309 1.2045 1.1781 1.1417 1.1253 1.0989 1.0725 1.0460

74356°—12 8
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From these figures any one who desires can plot the set of

curves for himself. The curve shown on Plate I was plotted from

the values for e = o.i; for larger values of e the curves would

differ from this only in a linear reduction of the ordinates. Hav-

ing this curve for e = o.i we may then find the value of (R—i)

by the following practical

Rule : Read from the curve the values of (R — i) at the two pres-

sures between which the expansion takes place; their difference is the

desired value of (R — i) for e = o.i. For any other value of e,

multiply by the factor '^'^

Many numerical tests have shown that values of R found by this

rule agree with those found from equation (A) much more closely

than any stage efficiency is ever known a priori, the discrepancy

being seldom over o. i per cent.

The rule may therefore be regarded as a satisfactory substitute

for the use of equation (A) ; but it remains to be shown that

equation (A) itself, obtained from an admittedly only approxi-

mate assumption regarding the distribution of the isopiestics,

gives sufficiently correct values of the reheat factor. This question

has now to be taken up.

12. DISTRIBUTION OF THE ISOPIESTICS ALONG AN ISENTROPIC

Let cpQ be the value of the entropy at some fixed isentropic line.

Let 2 be used to denote the value of // at a point on this line. In

section 10 it was assumed that the isopiestics all met in a single

point. If H and cp were both measured from that point we should

then have Zjcp^ = 0. li H and (p were measured from some other,

point, we should have in general

e = a + bZ (11)

where is the absolute saturation temperature of any isopiestic

and Z is the value of H at the point Vv^here this isopiestic crosses the

isentropic ^ = (p^. Equation (11) therefore represents the assump-
tion from which equation (A) was deduced. Readings on the

chart show that it is by no means exactly fulfilled. By readings

of Z from the Hep chart of Marks and Davis at 9>o
= 1.384, 1.544,
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and 1.704, it was found that in each case the values could be

represented by an expression of the form

\oge = A-\-BZ (12)

nearly though possibly not quite as closely as the readings could

be made. The values of A and B varied with the value of (p^.

A number of readings were made between the isopiestic for

/> = I pound and the saturation line. This empirical equation for

the change of H during isentropic expansion is one which I do not

remember to have seen given and which might prove useful in

other work than the present.

Since readings from the chart can not be made with any great

accuracy, recoiurse was now had to interpolation in the tables.

Values of H (i. e., of Z) were computed at ^0 = 1.384 for 21 pres-

sures from 0.5 poiuid to 513 poimds. Values of Z for the same
temperatures were then computed by the equation

Z = 1645 %,o<^- 3750.2 (13)

The greatest difference between Z obtained from the table and Z
calculated by equation (13) was 0.7 B. t. u. and the average

difference was only 0.3 B. t. u. The differences showed a sys-

tematic nm, but it was wave-like and not progressive, the value

passing through zero in the vicinity of 550°, 700°, and 900°

absolute F.

Equation (13) is therefore a quite exact empirical representa-

tion of the facts, as given in the tables, over the whole range of

pressures used in present steam practice. At any other isentropic

where the entropy has the value (p, equation (13) leads evidently

to the equation

z = 1645 log,^ e - 3750.2

+

e{(p - 1 .384) (14)

which must diverge from the tabulated values by precisely the

same amounts as equation (13). For security this was checked

through by interpolation in the tables for ^ = 1.684, from the

isopiestic p =0.505 Ib/in^ up to the saturation hne.

Since equations (13) and (14) are quite exact, it is evident that

equation (12), which is equivalent to (13) , must be less exact when

(po differs much from the value i .384, though it is an approximation

nearly or quite sufficiently close for use with the chart alone.
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Since equation (14) or its special case (13) is a much closer

representation of the facts then equation (11) from which (A)

was deduced, it follows that an expression deduced from (13) or

(14) will give more nearly correct values of the reheat factor than

are given by equation (A). We now proceed to deduce such an
expression.

/ ^

\y
/
/«

/ /i

A,/ E

z

<Po <p

Fig. 8

Let AB (Fig. 8) be an infinitesimal element of the expansion

line. Then, if e is the stage efficiency, we have

Now we have

Also

CD
DA

DB \ "P/p

DA -dH

(15)

DB d<p

where the symbol d refers to change along the expansion line.

Substituting these values in (15) gives us

dcp i-e
^dH^^-'T (16)

as an equation which must be satisfied at all points of the expan-

sion line and in all cases, regardless of the distribution of the

isopiestics.-^

^ The validity of this general equation is not limited to the case of wet steam.
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Let Ao be the intersection of the isopiestic through A with the

isentropic (p = (po, and let Z be the ordinate of this point. Then
we have

EA CD H-Z ^^
AoE DB 9-90

Whence
H-Z

9-<Po=—^—
Differentiating by H and muhiplying by gives us

ndcf) dZ .^ .1 dO
f

.

another general relation, which must hold for all points within

the saturation field and for motion of the state point in any direc-

tion whatever.

By comparison of equations (16) and (17) we get

fu 7\d log 6
,
dZ i , o\

If we now let <^o = 1.384, we may, as shown in section 12, set

loge = A-\-BZ (19)

and equation (18) may be reduced to the form

^ = e\^i+B{H-Z)\ (20)

a differential equation for the expansion hne in terms of H and Z.

This equation is satisfied by setting

H = Me^''^+Z +^ (21)
eB

in which M is the arbitrary constant, to be adjusted so that the

curve shall pass through the given initial position of the state

point.

From equation (19) we get BZ = log 6 -A, whence

and equation (21) may be written

^ =^Vz + L^ (22)
e^ eB
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Let dy Hy Zy refer to the initial state, the starting point of the

expansion line, and let

-^ =H,-Z,-^=L (23)

Then equation (22) takes the form

and the heat-drop along the expansion line between two points at

the absolute temperatures d^ and ^2 is given by

H.-H.^Z.-Z.+Lli-f^y] (25)

For isentropic expansion e = i . Hence by setting e = i in equa-

tions (22), (23), and (24) we have, along the isentropic through

the starting point of the expansion line,

H =N^+Z (26)

where
N = H,-Z, (27)

and the isentropic heat-drop from the initial point at 6 = 6^ to the

final pressure where 6 = 6215 given by

H,-H, = Zy-Z, +N(^i-^j (28)

The reheat factor therefore has the value

in which
N = H,-Z, (D,)

L =N-'-^ (D,)

Beside necessitating our working with absolute temperatures, the

determination of R by equation (D) requires our finding the val-

ues of Zi and Zj either graphically or by computation from equa-

tion (13). As a means for the practical computation of R for

use in designing, equation (D) is evidently so inconvenient as to

be entirely worthless; but it has a value as confirmatory of the
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results obtained by the practical rule given in section 1 1 ; for it

has been shown that that rule gives sensibly the same results,

within the range of present steam-turbine practice, as equation

(A), and furthermore that equation (D), based on a much more

accurate assumption than that which underlies the deduction of

(A) , must give more accurate values than (A) and therefore than

the rule. If, therefore, equation (D) gives sensibly the same values

as the rule, the values obtained by the rule mav be relied upon
as sensibly correct.

14. TESTS OF THE RULE FOR FINDING THE VALUE OF R

The tests consisted in computing R by equation (D) and com-

paring the results with values obtained by the rule given in

in section 1 1

.

The values of Z read from the H cp chart at ^ = 1.384 were ||

plotted against log^Q and a straight line drawn through the

points; the scales w^ere 100 B. t. u. =75 mm and, for log^^^ 6,

1.5 mm=5o.oi. The values of Z^ and Z2 needed in the compu-

tations Tvere read from this plot. The slope of this line when
reduced to terms of naperian logarithms for use in equation

(D2) gave 1/5=723. The readings of H^ for use in equation

(DJ were made from the H cp chart. More exact results might

have been had by obtaining all these values by computation

instead of graphically, but the precision of the graphical method

is sufficient for our purpose. It will not do, however, to compute

H^ from the table, but take Zj and Z2 from a plot or from an

equation derived from readings on the chart, for considerable

errors are thereby introduced. The chart, while self-consistent

and quite accurate enough for all ordinary purposes, is not an

exact representation of the tables, owing doubtless to difficulties

in printing. This, however, need not occasion any lack of con-

fidence in the chart, for the test of its accuracy is a severe one, as

will be found upon making a few computations by means of

equations (D), (DJ, and (D2).

A number of test computations covering the part of the satura-

tion field, which is of practical importance, were made by the

foregoing method. Values of R for the same cases were computed

by the rule of section 1 1 and in many instances also by equation

(A). On the whole the values obtained by the rule agreed with
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those obtained by the use of equation (D) somewhat more closely

than did values from equation (A) . A summary of the results of

these tests is given in the following table

:

TABLE III

Value of e X[R by equ. (22) — /? by rule] expressed as percentage of

(^1-/^3)

pi

pi

P\
lbs/in 2

abs
Xx 6=0.1 6=0.2 6=0.4 6=0,6 6=0.7

12.7 277.4 0.981 +0.03 -0.02 -0.02

45.5 277.4 .981 + .04 - .09 - .10

185.0 277.4 .981 - .03 - .20 - .22

44.0 66.2 1.00 - .06 - .09 - .10

33.7 21.9 .99 + .04 - .04 + .05

33.7 21.9 .88 + .04 - .06 + .07

33.7 21.9 .77 + .06 + .07 - .08

20.0 20.0 .99 +0.04 - .01 +0.03

20.0 20.0 .84 + .04 + .04 - .02

20.0 20.0 .79 + .04 - .02 - .01

20.0 120.0 .99 + .07 + .05 + .03 + .04

20.0 120.0 .84 + .08 + .04 + .03 + .04

300.0 300.0 1.00 - .01 - .19 - .25

110.0 110.0 1.00 - .06 - .13 - .10

35.0 35.0 1.00 + .07 + .01 - .01

8.0 8.0 1.00 + .03 + .01 + .02

In the first three columns of the table are given the pressure

ratio, the initial pressure, and the initial dryness factor; and it

will be seen that the tests are sufficiently varied. ^
The object in using the reheat factor is to determine the position

of a point B with an error in vertical position which shall be

negligible in comparison with the isentropic heat drop {H^ — H.^) .

This difference of position, in percentage of (H^ — H^), is found by
multiplying the difference of the two values of R—found by the

two methods—by the value of e, since R is always nearly unity.

Accordingly, the values in the table may be regarded as the changes

of height of the point B, in per cent of {H^-H^, caused by
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changing the method of computing R. The positive sign means
that the rule gives B a higher position than it should have accord-

ing to equation (D)

.

On account of errors in reading H, Z, and i^ — i from the curves,

differences of less than o.i have little or no significance unless

pjp2 is very large. It will be seen that the discrepancy never

exceeds one-fourth of i per cent and attains the value o.i per

cent only when the pressure ratio is large.

Since one-fourth of i per cent is, for the designer, a negligible

quantity, we may conclude that since one of the methods cer-

tainly gives a much more accurate value than the other, the error

involved in either method is negligible and the value of R is accu-

rate enough when found in either way. It follows that the values

of R obtained by the working rule given in section ii may be

relied upon for wet steam as being sufficiently accurate for use in

designing.

15. USES OF THE REHEAT FACTOR

Having thus a practical method of finding the reheat factor,

we are able to plot the expansion line. If p^^ and p2 are the

terminal pressures, the position of the final point may be found

by the equation
H,-H, = Re{H,-H,) (29)

We next take, instead of />2, the pressure corresponding to some
isopiestic about halfway (on the diagram, not numerically)

between the two terminal isopiestics. Using the rule to find R
for expansion from the initial to this intermediate pressure, we
compute the position of a point on the expansion line where it

intersects this intermediate isopiestic. Having now three points

of the expansion line, we may sketch it in as a circular arc. It

will then be evident whether or not it is worth while to go on to

determine still more points. Unless the expansion ratio pjp2 is

large, even a single intermediate point will usually be needless

and, after the final point B has been found, a straight line AB will

be close enough to the true expansion Une, even in the middle.

This, however, is a matter for the discretion of the individual

designer, who knows what reliance he may place on the value of

the stage efficiency on which his work is based.
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In designing a turbine for new conditions, it may be worth

while to make a number of preliminary sketch designs which need

not be worked out in detail further than to compute the probable

influence on the water rate of variations in the arrangement of

the stages. In such work, what is needed is not the form of the

expansion line but merely the actual heat drop {H^ —H^, which

may be expected in a given set of similar stages. If the expansion

ratio is large, neglecting the reheat factor may introduce an error

of 5 per cent or more, which is undesirable and may be avoided

by a single computation of the reheat factor for use in equation

(29).
16. GENERAL REMARKS

The foregoing methods are vaHd only when the isopiestics are

straight lines; they therefore fail for superheated steam. The
curvature of the isopiestics in the superheat field depends on

the specific heat of superheated steam at constant pressure.

Even if this were exactly known and expressible in simple mathe-

matical form, the development of a general differential equation

for the expansion line would be a difficult matter and the task

of integrating it would very possibly present insuperable mathe-

matical difficulties. But without attempting this general solu-

tion a few pertinent remarks may be made.

(a) Consideration of the Hep chart shows that an isentropic

expansion between two given isopiestics involves a greater change

in temperature for superheated than for wet steam, as may
also be seen from the pv chart. A dissipative expansion line

starting at a point in the superheat field will therefore fall more
sharply at first than if it started at the same pressure within

the saturation field and the reheat factor for a given pair of

terminal pressures and given stage efficiency will be greater

than for wet steam between the same pressures. Hence, if we
use the value of R computed for these pressures for wet steam,

we shall underestimate the actual heat-drop and combined
efficiency and be on the safe side as regards the economy
expected.

(6) Up to 100° F superheat the curvature of the isopiestics

is so small that the error can at most not be important if we simply
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use the value of R for wet steam between the same pressure

limits.

(c) The value of the quantity (R — i) decreases with the pres-

sure ratio pjp2 and decreases as the stage efficiency e increases.

Examination of the H(p chart in connection with Table II shows

that, unless the efficiency is very poor, with superheats up to

150° or 200° F, which are unusual as yet, the expansion ratio,

and therefore (R — i), can not be large for expansion entirely

within the superheat field, so that (R — i) can not be subject to

a large error. With poor efficiency the reheat might be enough

to keep the steam dry a long way down in the turbine, but such

a case is not of great commercial interest and does not demand
close designing.

(d) A high initial superheat has not as yet been much used

in the Parsons type of turbine, so that the superheat field is of

interest mainly to the designer of turbines in which the first

few stages, at least, are of the impulse type, not requiring fine

radial clearances. In such a turbine, the first one or two stages

will usually have rather large pressure ratios and will get rid

of the superheat, so that the remaining stages are working with

wet steam. It is not a serious matter to treat one or two stages

separately, by determining the state-points graphically, and

it is usually necessary to do so for at least one stage. For the

first stage is usually not quite Hke the later stages and has not

the same stage efficiency, so that an expansion fine drawn for

constant stage efficiency could not fit the facts in any event.

(e) The whole idea of the reheat factor and the need of drawing

the expansion fine arises from the fact that the combined effi-

ciency of a number of similar stages in series is greater than the

efficiency of each stage separately. The method developed for

finding the reheat factor was based on the assumption that the

heat-drop in each stage was small, for it consisted in developing

and integrating a differential equation for the expansion fine.

For a few stages with very high steam velocities, the results

would not be exact, but the whole matter is also, in that case,

of no importance; for the graphical construction for a few stages

is a simple operation and involves no great waste of time.
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(/) The notion of a reheat factor, as the term has been used in

this paper, is not applicable to a single stage. Let p^ and p2 be

the limiting pressures of a given single stage, and A (Fig. 9) the

initial state.

^H

Fig. 9

Then if B is the final state

AD H.-H^
AC~H,-H,

is the ratio of the mechanical energy produced to the maximum
possible in adiabatic expansion. If, as may be assumed in an

impulse stage, the difference of kinetic energy between similarly

situated points is negligible, AD/AC = e is the efficiency of the

stage. This is true regardless of whether the isopiestics are

straight or curved, i. e., whether the steam is wet or superheated,

so long as B is at p2, AC is vertical and DB is horizontal. If the

net efficiency of the stage is given beforehand, B is thus fixed by
the initial state A and the final pressure p2 and there is no question

of a reheat factor.

But the efficiency e may have been obtained in either of two
ways. If it was obtained by experiments on a stage similar to

the one in question and working under similar conditions, there

is nothing more to be said. But if it was computed from a velocity

diagram drawn with proper allowances for velocity losses in noz-

zles and blades, with subsequent correction for windage and

leakage, the case may be a trifle different in theory though hardly

in practice.
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Let A and therefore C be given, and let D be so placed as to

make AD/AC = €, where e is the computed efficiency. It now
becomes a question of when the various elements of the total dis-

sipation occur and of the temperature of the steam when the

various elements of the reheat are added to it. In an impulse

stage, in general, only a small fraction of the dissipation occurs

in the nozzles, hence the reheat is almost all added to the steam

after the lowest pressure and temperature have been reached.

The actual expansion line is therefore nearly coincident with the

broken line ACB, which would be the expansion line if all the dis-

sipation and reheating took place at p2. Hence, if e were computed

by some method which treated the reheat as all added at the low

pressure, while in reality a little of it is added at a higher pressure

and temperature in the nozzles, the efficiency thus computed

would be a trifle too small and should be multipHed by a factor

analogous to the reheat factor which, in effect, is introduced to

allow for the fact that in a series of stages the reheat is distributed

instead of being concentrated at the end of the last stage. The
improvement in accuracy due to the use of such a factor would,

however, be altogether illusory until our experimental knowledge

is sufficient to permit of a far more accurate a priori computation

of the stage efficiency than is at present possible.

To apply a reheat factor computed for the case of continuous

expansion through an infinite number of stages, to expansion

between the same pressure limits through a single stage, is alto-

gether erroneous.

(g) In conclusion we may say that, so far as present practice is

concerned, the fact the method given in this paper for finding the

value of the reheat factor is applicable only to wet steam, is not

an important restriction on its usefulness. In the designing of

turbines with many similar stages, its use may save a great deal

of time that would otherwise have to be spent over the drawing

board.

NOTE (TO SEC. 1).—LIMITATIONS OF THE THEORY

In the total energy equation, the terms To and T are taken as

including only kinetic energy of the axial component of the

velocity of the fluid. This is done because the only kinetic energy
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which can be utilized mechanically is that due to the general

motion of the fluid as a whole. Kinetic energy which is not

utilizable, such as that of eddy currents, is for our purposes not to

be counted as "mechanical" energy. It must ultimately be dis-

sipated into heat; and motions which are already so unordered as

to be incapable of mechanical utilization may be considered as

already, for our purposes, completely dissipated. It is of no

importance to the practical theory of steam flow whether they

have already become completely unordered in the molecular sense

or not.

A question then arises as to what is meant by the " state " of a

mass of fluid when it is the seat of eddy currents which are still on

a relatively large scale though already beyond our power to utilize

their kinetic energy directly. In going on to complete dissipation,

they " produce heat, " which is merely our convenient way of say-

ing that the dissipation tends to raise the temperature of the fluid.

We are thus led to ask precisely what is meant by the temperature

of the fluid at a given point in its course, and a very little considera-

tion at once makes it clear that the '' state " of a mass of fluid can

not be precisely defined at all, unless it is a state of quiescence.

Turbulent, states are not capable of precise description, and the

terms pressure and temperature have no precise meaning when
referring to a fluid in a condition of turbulent motion nor even

when referring to a volume element of a fluid moving as a whole

with a rapid acceleration.

But though the precise treatment of the vastly complicated

process of steam flow through a turbine is quite beyond our pow-
ers, the only important question is whether our theory is nearly

enough correct for practical purposes—whether it represents the

facts sufliciently well to be useful in predicting what will happen
practically in a future case. This question may without hesitation

be answered aflirmatively. We neglect certain recognized errors

in the theory and while we can not say, a priori, just how large

these errors are, we find a posteriori that they are negligible if we
use the theory with good judgment and do not throw common
sense to the winds. If one attempted to measure the temperature
of the steam issuing from a de Laval nozzle by putting the bulb of

a mercurial thermometer directly in the jet, and then—assuming
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that the thermometer could endure such treatment—compared

the readings with the theory, one might find very large discrepan-

cies. But no sensible person would expect anything else.

Every physical theory is built upon a simplified ideal picture of

the main outlines of the known facts. The simplifications, when
recognized, constitute the assumptions or hypotheses stated as a

basis for the theory. The degree of simplification permissible

depends on the acctiracy expected in using the theory for predic-

tion and is limited by the accuracy attainable in the experimental

verification of the results of prediction. In these respects the

theory of the steam turbine does not differ at all from other physical

theories ; only it happens that the accuracy required of the theory

is low on accotmt of experimental difficulties, and that the things

which the theory neglects in making its ideal picture of the facts

are so obvious that anyone can see them.

Washington, March 2, 191 1.
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